Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.211
Filtrar
1.
Nat Commun ; 15(1): 3223, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622146

RESUMO

Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.


Assuntos
Proteínas de Escherichia coli , Histidina Quinase/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilação , Potássio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Toxins (Basel) ; 16(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668620

RESUMO

The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.


Assuntos
Proteínas de Bactérias , Clostridium perfringens , Enterotoxinas , Histidina Quinase , Esporos Bacterianos , Clostridium perfringens/genética , Clostridium perfringens/enzimologia , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Enterotoxinas/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Regulação Bacteriana da Expressão Gênica , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Camundongos
3.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598410

RESUMO

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Botrytis , Dioxóis , Farmacorresistência Fúngica , Proteínas Fúngicas , Fungicidas Industriais , Histidina Quinase , Hidantoínas , Pirróis , Botrytis/genética , Botrytis/efeitos dos fármacos , Botrytis/enzimologia , Dioxóis/farmacologia , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidantoínas/farmacologia , Pirróis/farmacologia , Pirróis/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Doenças das Plantas/microbiologia , Simulação de Acoplamento Molecular , Mutação , Mutagênese Sítio-Dirigida
4.
J Proteome Res ; 23(5): 1666-1678, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38644792

RESUMO

Bordetella pertussis persists inside host cells, and virulence factors are crucial for intracellular adaptation. The regulation of B. pertussis virulence factor transcription primarily occurs through the modulation of the two-component system (TCS) known as BvgAS. However, additional regulatory systems have emerged as potential contributors to virulence regulation. Here, we investigate the impact of BP1092, a putative TCS histidine kinase that shows increased levels after bacterial internalization by macrophages, on B. pertussis proteome adaptation under nonmodulating (Bvg+) and modulating (Bvg-) conditions. Using mass spectrometry, we compare B. pertussis wild-type (wt), a BP1092-deficient mutant (ΔBP1092), and a ΔBP1092 trans-complemented strain under both conditions. We find an altered abundance of 10 proteins, including five virulence factors. Specifically, under nonmodulating conditions, the mutant strain showed decreased levels of FhaB, FhaS, and Cya compared to the wt. Conversely, under modulating conditions, the mutant strain exhibited reduced levels of BvgA and BvgS compared to those of the wt. Functional assays further revealed that the deletion of BP1092 gene impaired B. pertussis ability to survive within human macrophage THP-1 cells. Taken together, our findings allow us to propose BP1092 as a novel player involved in the intricate regulation of B. pertussis virulence factors and thus in adaptation to the intracellular environment. The data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD041940.


Assuntos
Proteínas de Bactérias , Bordetella pertussis , Histidina Quinase , Bordetella pertussis/patogenicidade , Bordetella pertussis/genética , Histidina Quinase/metabolismo , Histidina Quinase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Humanos , Proteoma , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Viabilidade Microbiana
5.
Nucleic Acids Res ; 52(7): 3856-3869, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477346

RESUMO

The genetic diversities of subpopulations drive the evolution of pathogens and affect their ability to infect hosts and cause diseases. However, most studies to date have focused on the identification and characterization of adaptive mutations in single colonies, which do not accurately reflect the phenotypes of an entire population. Here, to identify the composition of variant subpopulations within a pathogen population, we developed a streamlined approach that combines high-throughput sequencing of the entire population cells with genotyping of single colonies. Using this method, we reconstructed a detailed quorum-sensing (QS) evolutionary trajectory in Pseudomonas aeruginosa. Our results revealed a new adaptive mutation in the gacS gene, which codes for a histidine kinase sensor of a two-component system (TCS), during QS evolution. This mutation reduced QS activity, allowing the variant to sweep throughout the whole population, while still being vulnerable to invasion by the emerging QS master regulator LasR-null mutants. By tracking the evolutionary trajectory, we found that mutations in gacS facilitated QS-rewiring in the LasR-null mutant. This rapid QS revertant caused by inactive GacS was found to be associated with the promotion of ribosome biogenesis and accompanied by a trade-off of reduced bacterial virulence on host cells. In conclusion, our findings highlight the crucial role of the global regulator GacS in modulating the progression of QS evolution and the virulence of the pathogen population.


Assuntos
Proteínas de Bactérias , Evolução Molecular , Mutação , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Transativadores/genética , Transativadores/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Histidina Quinase/metabolismo
6.
J Bacteriol ; 206(4): e0040623, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38446058

RESUMO

The bacterial chemotaxis system is a well-understood signaling pathway that promotes bacterial success. Chemotaxis systems comprise chemoreceptors and the CheA kinase, linked by CheW or CheV scaffold proteins. Scaffold proteins provide connections between chemoreceptors and CheA and also between chemoreceptors to create macromolecular arrays. Chemotaxis is required for host colonization by many microbes, including the stomach pathogen Helicobacter pylori. This bacterium builds chemoreceptor-CheA contacts with two distinct scaffold proteins, CheW and CheV1. H. pylori cheW or cheV1 deletion mutants both lose chemoreceptor array formation, but show differing semisolid agar chemotaxis assay behaviors: ∆cheW mutants exhibit total migration failure, whereas ∆cheV1::cat mutants display a 50% reduction. On investigating these varied responses, we found that both mutants initially struggle with migration. However, over time, ∆cheV1::cat mutants develop a stable, enhanced migration capability, termed "migration-able" (Mig+). Whole-genome sequencing analysis of four distinct ∆cheV1::cat Mig+ strains identified single-nucleotide polymorphisms (SNPs) in hpg27_252 (hp0273) that were predicted to truncate the encoded protein. Computational analysis of the hpg27_252-encoded protein revealed it encoded a hypothetical protein that was a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori lacks Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM. Deleting hpg27_252 in the ∆cheV1::cat or wild type strain resulted in enhanced migration in semisolid agar. Our study thus reveals that while cheV1 mutants initially have significant migration defects, they can recover the migration ability through genetic suppressors, highlighting a complex regulatory mechanism in bacterial migration. IMPORTANCE: Chemotactic motility, present in over half of bacteria, depends on chemotaxis signaling systems comprising receptors, kinases, and scaffold proteins. In Helicobacter pylori, a stomach pathogen, chemotaxis is crucial for colonization, with CheV1 and CheW as key scaffold proteins. While both scaffolds are essential for building chemoreceptor complexes, their roles vary in other assays. Our research reexamines cheV1 mutants' behavior in semisolid agar, a standard chemotaxis test. Initially, cheV1 mutants exhibited defects similar to those of cheW mutants, but they evolved genetic suppressors that enhanced migration. These suppressors involve mutations in a previously uncharacterized gene, unknown in motility behavior. Our findings highlight the significant chemotaxis defects in cheV1 mutants and identify new elements influencing bacterial motility.


Assuntos
Proteínas de Escherichia coli , Helicobacter pylori , Proteínas de Bactérias/genética , Helicobacter pylori/genética , Ágar , Quimiotaxia/fisiologia , Células Quimiorreceptoras , Proteínas de Membrana/genética , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Histidina Quinase
7.
J Bacteriol ; 206(4): e0041823, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38456702

RESUMO

Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Transdução de Sinais/fisiologia , Histidina Quinase , Bactérias
8.
mBio ; 15(4): e0224823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477571

RESUMO

Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.


Assuntos
Bacillus , Histidina , Histidina Quinase/genética , Histidina Quinase/metabolismo , Histidina/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Bacillus/metabolismo , Clostridium/genética , Clostridium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica
9.
Proc Natl Acad Sci U S A ; 121(14): e2312064121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530894

RESUMO

Motile bacteria use large receptor arrays to detect chemical and physical stimuli in their environment, process this complex information, and accordingly bias their swimming in a direction they deem favorable. The chemoreceptor molecules form tripod-like trimers of receptor dimers through direct contacts between their cytoplasmic tips. A pair of trimers, together with a dedicated kinase enzyme, form a core signaling complex. Hundreds of core complexes network to form extended arrays. While considerable progress has been made in revealing the hierarchical structure of the array, the molecular properties underlying signal processing in these structures remain largely unclear. Here we analyzed the signaling properties of nonnetworked core complexes in live cells by following both conformational and kinase control responses to attractant stimuli and to output-biasing lesions at various locations in the receptor molecule. Contrary to the prevailing view that individual receptors are binary two-state devices, we demonstrate that conformational coupling between the ligand binding and the kinase-control receptor domains is, in fact, only moderate. In addition, we demonstrate communication between neighboring receptors through their trimer-contact domains that biases them to adopt similar signaling states. Taken together, these data suggest a view of signaling in receptor trimers that allows significant signal integration to occur within individual core complexes.


Assuntos
Proteínas de Escherichia coli , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Células Quimiorreceptoras/metabolismo , Proteínas de Transporte/metabolismo , Quimiotaxia/fisiologia , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo
10.
J Biol Chem ; 300(4): 107148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462162

RESUMO

Bathy phytochromes are a subclass of bacterial biliprotein photoreceptors that carry a biliverdin IXα chromophore. In contrast to prototypical phytochromes that adopt a red-light-absorbing Pr ground state, the far-red light-absorbing Pfr-form is the thermally stable ground state of bathy phytochromes. Although the photobiology of bacterial phytochromes has been extensively studied since their discovery in the late 1990s, our understanding of the signal transduction process to the connected transmitter domains, which are often histidine kinases, remains insufficient. Initiated by the analysis of the bathy phytochrome PaBphP from Pseudomonas aeruginosa, we performed a systematic analysis of five different bathy phytochromes with the aim to derive a general statement on the correlation of photostate and autokinase output. While all proteins adopt different Pr/Pfr-fractions in response to red, blue, and far-red light, only darkness leads to a pure or highly enriched Pfr-form, directly correlated with the lowest level of autokinase activity. Using this information, we developed a method to quantitatively correlate the autokinase activity of phytochrome samples with well-defined stationary Pr/Pfr-fractions. We demonstrate that the off-state of the phytochromes is the Pfr-form and that different Pr/Pfr-fractions enable the organisms to fine-tune their kinase output in response to a certain light environment. Furthermore, the output response is regulated by the rate of dark reversion, which differs significantly from 5 s to 50 min half-life. Overall, our study indicates that bathy phytochromes function as sensors of light and darkness, rather than red and far-red light, as originally postulated.


Assuntos
Proteínas de Bactérias , Escuridão , Fitocromo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Histidina Quinase/metabolismo , Histidina Quinase/genética , Luz , Fotorreceptores Microbianos/metabolismo , Fitocromo/metabolismo , Fitocromo/química , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Ativação Enzimática
11.
Angew Chem Int Ed Engl ; 63(13): e202318503, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38311597

RESUMO

ATP (adenosine triphosphate) is a vital energy source for living organisms, and its biosynthesis and precise concentration regulation often depend on macromolecular machinery composed of protein complexes or complicated multidomain proteins. We have identified a single-domain protein HK853CA derived from bacterial histidine kinases (HK) that can catalyze ATP synthesis efficiently. Here, we explored the reaction mechanism and multiple factors that influence this catalysis through a combination of experimental techniques and molecular simulations. Moreover, we optimized its enzymatic activity and applied it as an ATP replenishment machinery to other ATP-dependent systems. Our results broaden the understanding of ATP biosynthesis and show that the single CA domain can be applied as a new biomolecular catalyst used for ATP supply.


Assuntos
Bactérias , Proteínas de Bactérias , Histidina Quinase/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise
12.
J Biol Chem ; 300(3): 105764, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367670

RESUMO

In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.


Assuntos
Proteínas de Bactérias , Complexo IV da Cadeia de Transporte de Elétrons , Mycobacterium smegmatis , Fator sigma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Histidina Quinase/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
13.
J Agric Food Chem ; 72(8): 4237-4245, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38374637

RESUMO

Sclerotinia sclerotiorum is the causal agent of sclerotinia stem rot in over 400 plant species. In a previous study, the group III histidine kinase gene of S. sclerotiorum (Shk1) revealed its involvement in iprodione and fludioxonil sensitivity and osmotic stress. To further investigate the fungicide sensitivity associated with the high-osmolarity glycerol (HOG) pathway, we functionally characterized SsHog1, which is the downstream kinase of Shk1. To generate knockout mutants, split marker transformation combined with a newly developed repeated protoplasting method and CRISPR/Cas9 ribonucleoprotein (RNP) delivery approach were used. The pure SsHog1 and Shk1 knockout mutants showed reduced sensitivity to fungicides and increased sensitivity to osmotic stress. In addition, the SsHog1 knockout mutants demonstrated reduced virulence compared to Shk1 knockout mutants and wild-type. Our results indicate that the repeated protoplasting method and RNP approach can generate genetically pure homokaryotic mutants and SsHog1 is involved in osmotic adaptation, fungicide sensitivity, and virulence in S. sclerotiorum.


Assuntos
Ascomicetos , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Histidina Quinase/genética , Ascomicetos/metabolismo
14.
J Bacteriol ; 206(1): e0027623, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38169296

RESUMO

Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogen Pseudomonas aeruginosa. This network has also been associated with regulating many virulence factors P. aeruginosa secretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion of nahK leads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of all P. aeruginosa quorum-sensing (QS) systems, with a large upregulation of the Pseudomonas quinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system, las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium that establishes biofilms as part of its pathogenicity. P. aeruginosa infections are associated with nosocomial infections. As the prevalence of multi-drug-resistant P. aeruginosa increases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases in P. aeruginosa implicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in the P. aeruginosa lifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.


Assuntos
Biofilmes , Piocianina , Histidina Quinase/genética , Histidina Quinase/metabolismo , Percepção de Quorum , Fatores de Virulência/metabolismo , Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia
15.
Pestic Biochem Physiol ; 198: 105750, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225093

RESUMO

Gray mold, caused by the fungus Botrytis cinerea, is one of the most important plant diseases worldwide that is prone to developing resistance to fungicides. Currently, the phenylpyrrole fungicide fludioxonil exhibits excellent efficacy in the control of gray mold in China. In this study, we detected the fludioxonil resistance of gray mold disease in Shouguang City of Shandong Province, where we first found fludioxonil-resistant isolates of B. cinerea in 2014. A total of 87 single spore isolates of B. cinerea were obtained from cucumbers in greenhouse, and 3 of which could grow on PDA plates amended with 50 µg/mL fludioxonil that was defined as high-level resistance, with a resistance frequency of 3.4%. Furthermore, the 3 fludioxonil-resistant isolates also showed high-level resistance to the dicarboximide fungicides iprodione and procymidone. Sequencing comparison revealed that all the 3 fludioxonil-resistant isolates had a point mutation at codon 1158, GAC (Asp) â†’ AAC (Asn) in the histidine kinase Bos1, which was proved to be the reason for fludioxonil resistance. In addition, the fludioxonil-resistant isolates possessed an impaired biological fitness compared to the sensitive isolates based on the results of mycelial growth, conidiation, virulence, and osmotic stress tolerance determination. Taken together, our results indicate that the high-level resistance to fludioxonil caused by the Bos1 point mutation (D1158N) has emerged in the field gray mold disease, and the resistance risk is relatively high, and fludioxonil should be used sparingly.


Assuntos
Síndrome Brânquio-Otorrenal , Dioxóis , Fungicidas Industriais , Pirróis , Fungicidas Industriais/farmacologia , Histidina Quinase/genética , Mutação Puntual , Farmacorresistência Fúngica/genética , Fungos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Botrytis
16.
Biosci Biotechnol Biochem ; 88(3): 294-304, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38059852

RESUMO

We have previously isolated the Gram-positive chitin-degrading bacterium Paenibacillus sp. str. FPU-7. This bacterium traps chitin disaccharide (GlcNAc)2 on its cell surface using two homologous solute-binding proteins, NagB1 and NagB2. Bacteria use histidine kinase (HK) of the two-component regulatory system as an extracellular environment sensor. In this study, we found that nagS, which encodes a HK, is located next to the nagB1 gene. Biochemical experiments revealed that the NagS sensor domain (NagS30-294) interacts with the NagB1-(GlcNAc)2 complex. However, proof of NagS30-294 interacting with NagB1 without (GlcNAc)2 is currently unavailable. In contrast to NagB1, no complex formation was observed between NagS30-294 and NagB2, even in the presence of (GlcNAc)2. The NagS30-294 crystal structure at 1.8 Å resolution suggested that the canonical tandem-Per-Arnt-Sim fold recognizes the NagB1-(GlcNAc)2 complex. This study provides insight into the recognition of chitin oligosaccharides by bacteria.


Assuntos
Proteínas de Transporte , Paenibacillus , Histidina Quinase/genética , Histidina Quinase/metabolismo , Oligossacarídeos/química , Quitina/metabolismo
17.
Biochimie ; 218: 76-84, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37567357

RESUMO

The PAS (Per-ARNT-Sim) domain is a sensory protein regulatory module found in archaea, prokaryotes, and eukaryotes. Histidine and serine/threonine protein kinases, chemo- and photoreceptors, circadian rhythm regulators, ion channels, phosphodiesterases, and other cellular response regulators are among these proteins. Hik33 is a multifunctional sensory histidine kinase that is implicated in cyanobacterial responses to cold, salt, hyperosmotic, and oxidative stressors. The functional roles of individual Hik33 domains in signal transduction were investigated in this study. Synechocystis Hik33 deletion variants were developed, in which either both or a portion of the transmembrane domains and/or the PAS domain were deleted. Cold stress was applied to the mutant strains either under illumination or in the dark. The findings show that the transmembrane domains govern temperature responses, whereas PAS domain may be involved in regulation of downstream gene expression in light-dependent manner.


Assuntos
Synechocystis , Histidina Quinase/genética , Histidina Quinase/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Luz , Regulação Bacteriana da Expressão Gênica
18.
Pest Manag Sci ; 80(2): 463-472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743431

RESUMO

BACKGROUD: Two-component histidine kinase (HK) phosphorelay signaling systems play important roles in differentiation, virulence, secondary metabolite production and response to environmental signals. Allyl isothiocyanate (A-ITC) is a hydrolysis product of glucosinolates with excellent antifungal activity. Our previous study indicated that the mycelial growth of Cochliobolus heterostrophus was significantly hindered by A-ITC. However, the function of HK in regulating A-ITC sensitivity was not clear in C. heterostrophus, the causal agent of Southern corn leaf blight. RESULTS: In this study, the role of HKs was investigated in C. heterostrophus. Deletion of the HK coding gene ChNIK1 resulted in dramatically increased sensitivity of C. heterostrophus to A-ITC. In addition, ΔChnik1 mutant exhibited significantly decreased conidiation and increased sensitivity to NaCl, KCl, tebuconazole and azoxystrobin, but deletion of the other five HK genes did not affect the A-ITC sensitivity of C. heterostrophus. ChSLN1, ChNIK4, ChNIK8 and ChMAK2 are essential for conidiation and response to H2 O2 and sodium dodecyl sulfate. However, deletion of NIKs had on effect on significant virulence. CONCLUSION: Our findings demonstrate that the HKs play different roles in A-ITC sensitivity in C. heterostrophus. © 2023 Society of Chemical Industry.


Assuntos
Ascomicetos , Bipolaris , Histidina , Histidina Quinase/genética , Ascomicetos/genética , Isotiocianatos , Zea mays/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
19.
Microbiol Spectr ; 12(1): e0346423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38038435

RESUMO

IMPORTANCE: We found that in contrast to the best-studied model organisms, such as Escherichia coli and Bacillus subtilis, most bacterial and archaeal species have a CheA protein with a different domain composition. We report variations in CheA architecture, such as domain duplication and acquisition as well as class-specific domain composition. Our results will be of interest to those working on signal transduction in bacteria and archaea and lay the foundation for experimental studies.


Assuntos
Archaea , Proteínas de Escherichia coli , Histidina Quinase/genética , Histidina Quinase/metabolismo , Archaea/genética , Archaea/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia , Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilação
20.
Protein Sci ; 33(1): e4846, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010737

RESUMO

In this study, we present a conformational landscape of 5000 AlphaFold2 models of the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) domain, a short helical bundle that transduces signals from sensors to effectors in two-component signaling proteins such as sensory histidine kinases and chemoreceptors. The landscape reveals the conformational variability of the HAMP domain, including rotations, shifts, displacements, and tilts of helices, many combinations of which have not been observed in experimental structures. HAMP domains belonging to a single family tend to occupy a defined region of the landscape, even when their sequence similarity is low, suggesting that individual HAMP families have evolved to operate in a specific conformational range. The functional importance of this structural conservation is illustrated by poly-HAMP arrays, in which HAMP domains from families with opposite conformational preferences alternate, consistent with the rotational model of signal transduction. The only poly-HAMP arrays that violate this rule are predicted to be of recent evolutionary origin and structurally unstable. Finally, we identify a family of HAMP domains that are likely to be dynamic due to the presence of a conserved pi-helical bulge. All code associated with this work, including a tool for rapid sequence-based prediction of the rotational state in HAMP domains, is deposited at https://github.com/labstructbioinf/HAMPpred.


Assuntos
Proteínas de Bactérias , Histidina , Proteínas de Bactérias/química , Conformação Molecular , Transdução de Sinais , Histidina Quinase/genética , Histidina Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...